Properties

Genus \(4\)
Quotient Genus \(0\)
Group \(C_3\times A_4\)
Signature \([ 0; 3, 3, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 4
Quotient Genus: 0
Group name: $C_3\times A_4$
Group identifier: [36,11]
Signature: $[ 0; 3, 3, 6 ]$
Conjugacy classes for this refined passport: 6, 9, 11

The full automorphism group for this family is $C_3\times S_4$ with signature $[ 0; 2, 3, 12 ]$.

Jacobian variety group algebra decomposition:$E\times E^{3}$
Corresponding character(s): 2, 11

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

4.36-11.0.3-3-6.4.1

  (1,25,13) (2,27,16) (3,28,14) (4,26,15) (5,29,17) (6,31,20) (7,32,18) (8,30,19) (9,33,21) (10,35,24) (11,36,22) (12,34,23)
  (1,23,32) (2,22,30) (3,24,29) (4,21,31) (5,15,36) (6,14,34) (7,16,33) (8,13,35) (9,19,28) (10,18,26) (11,20,25) (12,17,27)
  (1,7,9,3,5,11) (2,8,10,4,6,12) (13,19,21,15,17,23) (14,20,22,16,18,24) (25,31,33,27,29,35) (26,32,34,28,30,36)