Properties

Genus \(4\)
Quotient Genus \(0\)
Group \(C_3\times A_4\)
Signature \([ 0; 3, 3, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 4
Quotient Genus: 0
Group name: $C_3\times A_4$
Group identifier: [36,11]
Signature: $[ 0; 3, 3, 6 ]$
Conjugacy classes for this refined passport: 6, 7, 12

The full automorphism group for this family is $C_3\times S_4$ with signature $[ 0; 2, 3, 12 ]$.

Jacobian variety group algebra decomposition:$E\times E^{3}$
Corresponding character(s): 2, 11

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

4.36-11.0.3-3-6.3.1

  (1,25,13) (2,27,16) (3,28,14) (4,26,15) (5,29,17) (6,31,20) (7,32,18) (8,30,19) (9,33,21) (10,35,24) (11,36,22) (12,34,23)
  (1,19,36) (2,18,34) (3,20,33) (4,17,35) (5,23,28) (6,22,26) (7,24,25) (8,21,27) (9,15,32) (10,14,30) (11,16,29) (12,13,31)
  (1,11,5,3,9,7) (2,12,6,4,10,8) (13,23,17,15,21,19) (14,24,18,16,22,20) (25,35,29,27,33,31) (26,36,30,28,34,32)