Properties

Genus \(4\)
Quotient Genus \(0\)
Group \(C_3\times S_3\)
Signature \([ 0; 2, 2, 3, 3 ]\)
Generating Vectors \(2\)

Related objects

Downloads

Learn more about

Family Information

Genus: 4
Quotient Genus: 0
Group name: $C_3\times S_3$
Group identifier: [18,3]
Signature: $[ 0; 2, 2, 3, 3 ]$
Conjugacy classes for this refined passport: 2, 2, 6, 7

The full automorphism group for this family is $S_3^2$ with signature $[ 0; 2, 2, 2, 3 ]$.

Jacobian variety group algebra decomposition:$A_{2}\times E^{2}$
Corresponding character(s): 4, 7

Generating Vector(s)

Displaying 2 of 2 generating vectors for this refined passport.

4.18-3.0.2-2-3-3.3.1

  (1,10) (2,12) (3,11) (4,13) (5,15) (6,14) (7,16) (8,18) (9,17)
  (1,10) (2,12) (3,11) (4,13) (5,15) (6,14) (7,16) (8,18) (9,17)
  (1,5,9) (2,6,7) (3,4,8) (10,14,18) (11,15,16) (12,13,17)
  (1,9,5) (2,7,6) (3,8,4) (10,18,14) (11,16,15) (12,17,13)

4.18-3.0.2-2-3-3.3.2
  (1,10) (2,12) (3,11) (4,13) (5,15) (6,14) (7,16) (8,18) (9,17)
  (1,12) (2,11) (3,10) (4,15) (5,14) (6,13) (7,18) (8,17) (9,16)
  (1,6,8) (2,4,9) (3,5,7) (10,15,17) (11,13,18) (12,14,16)
  (1,9,5) (2,7,6) (3,8,4) (10,18,14) (11,16,15) (12,17,13)

Display number of generating vectors: