Properties

Label 3.12-3.0.2-2-3-3.1
Genus \(3\)
Quotient genus \(0\)
Group \(A_4\)
Signature \([ 0; 2, 2, 3, 3 ]\)
Generating Vectors \(3\)

Related objects

Downloads

Learn more

Family Information

Genus: $3$
Quotient genus: $0$
Group name: $A_4$
Group identifier: $[12,3]$
Signature: $[ 0; 2, 2, 3, 3 ]$
Conjugacy classes for this refined passport: $2, 2, 3, 4$

The full automorphism group for this family is $S_4$ with signature $[ 0; 2, 2, 2, 3 ]$.

Jacobian variety group algebra decomposition:$E^{3}$
Corresponding character(s): $4$

Generating vector(s)

Displaying 3 of 3 generating vectors for this refined passport.

3.12-3.0.2-2-3-3.1.1

  (1,2) (3,4) (5,6) (7,8) (9,10) (11,12)
  (1,2) (3,4) (5,6) (7,8) (9,10) (11,12)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)

3.12-3.0.2-2-3-3.1.2
  (1,2) (3,4) (5,6) (7,8) (9,10) (11,12)
  (1,4) (2,3) (5,8) (6,7) (9,12) (10,11)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)

3.12-3.0.2-2-3-3.1.3
  (1,2) (3,4) (5,6) (7,8) (9,10) (11,12)
  (1,3) (2,4) (5,7) (6,8) (9,11) (10,12)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)

Display number of generating vectors:

Displaying the unique representative of this refined passport up to braid equivalence.

  3.12-3.0.2-2-3-3.1.1

  (1,2) (3,4) (5,6) (7,8) (9,10) (11,12)
  (1,2) (3,4) (5,6) (7,8) (9,10) (11,12)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)