Family Information
Genus: | $3$ |
Quotient genus: | $0$ |
Group name: | $A_4$ |
Group identifier: | $[12,3]$ |
Signature: | $[ 0; 2, 2, 3, 3 ]$ |
Conjugacy classes for this refined passport: | $2, 2, 3, 4$ |
The full automorphism group for this family is $S_4$ with signature $[ 0; 2, 2, 2, 3 ]$.
Jacobian variety group algebra decomposition: | $E^{3}$ |
Corresponding character(s): | $4$ |
Generating vector(s)
Displaying 3 of 3 generating vectors for this refined passport.
3.12-3.0.2-2-3-3.1.1
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,9,5) (2,11,8) (3,12,6) (4,10,7) |
3.12-3.0.2-2-3-3.1.2
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,11,6) (2,9,7) (3,10,5) (4,12,8) |
3.12-3.0.2-2-3-3.1.3
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,3) (2,4) (5,7) (6,8) (9,11) (10,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,12,7) (2,10,6) (3,9,8) (4,11,5) |
Displaying the unique representative of this refined passport up to braid equivalence.
3.12-3.0.2-2-3-3.1.1
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,9,5) (2,11,8) (3,12,6) (4,10,7) |