# Properties

 Label 14.6-2.0.2-2-2-2-2-2-2-2-2-2-3-3.1 Genus $$14$$ Quotient genus $$0$$ Group $$C_6$$ Signature $$[ 0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3 ]$$ Generating Vectors $$1$$

# Learn more

## Family Information

 Genus: $14$ Quotient genus: $0$ Group name: $C_6$ Group identifier: $[6,2]$ Signature: $[ 0; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3 ]$
 Conjugacy classes for this refined passport: $2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4$

 Jacobian variety group algebra decomposition: $A_{4}\times A_{10}$

## Other Data

 Hyperelliptic curve(s): yes Hyperelliptic involution: (1,4) (2,5) (3,6) Cyclic trigonal curve(s): no

 Equation(s) of curve(s) in this refined passport:
 $y^2=x^{30}+a_{1}x^{27}+a_{2}x^{24}+a_{3}x^{21}+a_{4}x^{18}+a_{5}x^{15}+a_{6}x^{12}+a_{7}x^{9}+a_{8}x^{6}+a_{9}x^{3}+1$

## Generating vector(s)

Displaying the unique generating vector for this refined passport.

14.6-2.0.2-2-2-2-2-2-2-2-2-2-3-3.1.1

 (1,4) (2,5) (3,6) (1,4) (2,5) (3,6) (1,4) (2,5) (3,6) (1,4) (2,5) (3,6) (1,4) (2,5) (3,6) (1,4) (2,5) (3,6) (1,4) (2,5) (3,6) (1,4) (2,5) (3,6) (1,4) (2,5) (3,6) (1,4) (2,5) (3,6) (1,2,3) (4,5,6) (1,3,2) (4,6,5)