Properties

Label 13.12-3.0.3-3-3-3-3-3.2
Genus \(13\)
Quotient genus \(0\)
Group \(A_4\)
Signature \([ 0; 3, 3, 3, 3, 3, 3 ]\)
Generating Vectors \(85\)

Related objects

Downloads

Learn more

Family Information

Genus: $13$
Quotient genus: $0$
Group name: $A_4$
Group identifier: $[12,3]$
Signature: $[ 0; 3, 3, 3, 3, 3, 3 ]$
Conjugacy classes for this refined passport: $3, 3, 3, 4, 4, 4$

Jacobian variety group algebra decomposition:$A_{4}\times A_{3}^{3}$
Corresponding character(s): $2, 4$

Other Data

Hyperelliptic curve(s):no
Cyclic trigonal curve(s):no

Generating vector(s)

Displaying 20 of 85 generating vectors for this refined passport.

13.12-3.0.3-3-3-3-3-3.2.1

  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)

13.12-3.0.3-3-3-3-3-3.2.2
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)

13.12-3.0.3-3-3-3-3-3.2.3
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)

13.12-3.0.3-3-3-3-3-3.2.4
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)

13.12-3.0.3-3-3-3-3-3.2.5
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)

13.12-3.0.3-3-3-3-3-3.2.6
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)

13.12-3.0.3-3-3-3-3-3.2.7
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)

13.12-3.0.3-3-3-3-3-3.2.8
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)

13.12-3.0.3-3-3-3-3-3.2.9
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)

13.12-3.0.3-3-3-3-3-3.2.10
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)

13.12-3.0.3-3-3-3-3-3.2.11
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)

13.12-3.0.3-3-3-3-3-3.2.12
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)

13.12-3.0.3-3-3-3-3-3.2.13
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)

13.12-3.0.3-3-3-3-3-3.2.14
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)

13.12-3.0.3-3-3-3-3-3.2.15
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)

13.12-3.0.3-3-3-3-3-3.2.16
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)

13.12-3.0.3-3-3-3-3-3.2.17
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)

13.12-3.0.3-3-3-3-3-3.2.18
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)
  (1,9,5) (2,11,8) (3,12,6) (4,10,7)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)

13.12-3.0.3-3-3-3-3-3.2.19
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)
  (1,12,7) (2,10,6) (3,9,8) (4,11,5)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)

13.12-3.0.3-3-3-3-3-3.2.20
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,5,9) (2,8,11) (3,6,12) (4,7,10)
  (1,7,12) (2,6,10) (3,8,9) (4,5,11)
  (1,11,6) (2,9,7) (3,10,5) (4,12,8)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)
  (1,10,8) (2,12,5) (3,11,7) (4,9,6)

Display number of generating vectors: