Properties

Genus \(12\)
Quotient Genus \(0\)
Group \(D_{12}\)
Signature \([ 0; 2, 2, 2, 2, 12 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 12
Quotient Genus: 0
Group name: $D_{12}$
Group identifier: [24,6]
Signature: $[ 0; 2, 2, 2, 2, 12 ]$
Conjugacy classes for this refined passport: 2, 2, 3, 4, 9

Jacobian variety group algebra decomposition:$A_{2}^{2}\times A_{4}^{2}$
Corresponding character(s): 7, 8

Other Data

Hyperelliptic curve(s):Yes
Hyperelliptic involution: (1,4) (2,5) (3,6) (7,10) (8,11) (9,12) (13,16) (14,17) (15,18) (19,22) (20,23) (21,24)
Cyclic trigonal curve(s):No

Equation(s) of curve(s) in this refined passport:
  $y^2=x(x^{12}+a_{1}x^{6}+1)(x^{12}+a_{2}x^{6}+1)$

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

12.24-6.0.2-2-2-2-12.2.1

  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12) (13,16) (14,17) (15,18) (19,22) (20,23) (21,24)
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12) (13,16) (14,17) (15,18) (19,22) (20,23) (21,24)
  (1,13) (2,15) (3,14) (4,16) (5,18) (6,17) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20)
  (1,21) (2,20) (3,19) (4,24) (5,23) (6,22) (7,15) (8,14) (9,13) (10,18) (11,17) (12,16)
  (1,11,6,7,2,12,4,8,3,10,5,9) (13,23,18,19,14,24,16,20,15,22,17,21)