# Properties

 Label 12.24-6.0.2-2-2-2-12.1 Genus $$12$$ Quotient genus $$0$$ Group $$D_{12}$$ Signature $$[ 0; 2, 2, 2, 2, 12 ]$$ Generating Vectors $$1$$

# Related objects

## Family Information

 Genus: $12$ Quotient genus: $0$ Group name: $D_{12}$ Group identifier: $[24,6]$ Signature: $[ 0; 2, 2, 2, 2, 12 ]$
 Conjugacy classes for this refined passport: $2, 2, 3, 4, 8$

 Jacobian variety group algebra decomposition: $A_{2}^{2}\times A_{4}^{2}$ Corresponding character(s): $7, 8$

## Other Data

 Hyperelliptic curve(s): yes Hyperelliptic involution: (1,4) (2,5) (3,6) (7,10) (8,11) (9,12) (13,16) (14,17) (15,18) (19,22) (20,23) (21,24) Cyclic trigonal curve(s): no

 Equation(s) of curve(s) in this refined passport:
 $y^2=x(x^{12}+a_{1}x^{6}+1)(x^{12}+a_{2}x^{6}+1)$

## Generating vector(s)

Displaying the unique generating vector for this refined passport.

12.24-6.0.2-2-2-2-12.1.1

 (1,4) (2,5) (3,6) (7,10) (8,11) (9,12) (13,16) (14,17) (15,18) (19,22) (20,23) (21,24) (1,4) (2,5) (3,6) (7,10) (8,11) (9,12) (13,16) (14,17) (15,18) (19,22) (20,23) (21,24) (1,13) (2,15) (3,14) (4,16) (5,18) (6,17) (7,22) (8,24) (9,23) (10,19) (11,21) (12,20) (1,20) (2,19) (3,21) (4,23) (5,22) (6,24) (7,14) (8,13) (9,15) (10,17) (11,16) (12,18) (1,12,5,7,3,11,4,9,2,10,6,8) (13,24,17,19,15,23,16,21,14,22,18,20)