Properties

Genus \(12\)
Quotient Genus \(0\)
Group \(D_{11}\)
Signature \([ 0; 2, 2, 2, 2, 2, 2 ]\)
Generating Vectors \(7320\)

Related objects

Downloads

Learn more about

Family Information

Genus: 12
Quotient Genus: 0
Group name: $D_{11}$
Group identifier: [22,1]
Signature: $[ 0; 2, 2, 2, 2, 2, 2 ]$
Conjugacy classes for this refined passport: 2, 2, 2, 2, 2, 2

Jacobian variety group algebra decomposition:$A_{2}\times A_{5}^{2}$
Corresponding character(s): 2, 3

Other Data

Hyperelliptic curve(s):No
Cyclic trigonal curve(s):No

Generating Vector(s)

Displaying 20 of 7320 generating vectors for this refined passport.

12.22-1.0.2-2-2-2-2-2.1.1

  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)

12.22-1.0.2-2-2-2-2-2.1.2
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,16) (2,15) (3,14) (4,13) (5,12) (6,22) (7,21) (8,20) (9,19) (10,18) (11,17)
  (1,16) (2,15) (3,14) (4,13) (5,12) (6,22) (7,21) (8,20) (9,19) (10,18) (11,17)

12.22-1.0.2-2-2-2-2-2.1.3
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,18) (2,17) (3,16) (4,15) (5,14) (6,13) (7,12) (8,22) (9,21) (10,20) (11,19)
  (1,18) (2,17) (3,16) (4,15) (5,14) (6,13) (7,12) (8,22) (9,21) (10,20) (11,19)

12.22-1.0.2-2-2-2-2-2.1.4
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,20) (2,19) (3,18) (4,17) (5,16) (6,15) (7,14) (8,13) (9,12) (10,22) (11,21)
  (1,20) (2,19) (3,18) (4,17) (5,16) (6,15) (7,14) (8,13) (9,12) (10,22) (11,21)

12.22-1.0.2-2-2-2-2-2.1.5
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,22) (2,21) (3,20) (4,19) (5,18) (6,17) (7,16) (8,15) (9,14) (10,13) (11,12)
  (1,22) (2,21) (3,20) (4,19) (5,18) (6,17) (7,16) (8,15) (9,14) (10,13) (11,12)

12.22-1.0.2-2-2-2-2-2.1.6
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,21) (2,20) (3,19) (4,18) (5,17) (6,16) (7,15) (8,14) (9,13) (10,12) (11,22)

12.22-1.0.2-2-2-2-2-2.1.7
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)

12.22-1.0.2-2-2-2-2-2.1.8
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,16) (2,15) (3,14) (4,13) (5,12) (6,22) (7,21) (8,20) (9,19) (10,18) (11,17)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)

12.22-1.0.2-2-2-2-2-2.1.9
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,18) (2,17) (3,16) (4,15) (5,14) (6,13) (7,12) (8,22) (9,21) (10,20) (11,19)
  (1,16) (2,15) (3,14) (4,13) (5,12) (6,22) (7,21) (8,20) (9,19) (10,18) (11,17)

12.22-1.0.2-2-2-2-2-2.1.10
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,20) (2,19) (3,18) (4,17) (5,16) (6,15) (7,14) (8,13) (9,12) (10,22) (11,21)
  (1,18) (2,17) (3,16) (4,15) (5,14) (6,13) (7,12) (8,22) (9,21) (10,20) (11,19)

12.22-1.0.2-2-2-2-2-2.1.11
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,22) (2,21) (3,20) (4,19) (5,18) (6,17) (7,16) (8,15) (9,14) (10,13) (11,12)
  (1,20) (2,19) (3,18) (4,17) (5,16) (6,15) (7,14) (8,13) (9,12) (10,22) (11,21)

12.22-1.0.2-2-2-2-2-2.1.12
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,13) (2,12) (3,22) (4,21) (5,20) (6,19) (7,18) (8,17) (9,16) (10,15) (11,14)
  (1,22) (2,21) (3,20) (4,19) (5,18) (6,17) (7,16) (8,15) (9,14) (10,13) (11,12)

12.22-1.0.2-2-2-2-2-2.1.13
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,15) (2,14) (3,13) (4,12) (5,22) (6,21) (7,20) (8,19) (9,18) (10,17) (11,16)
  (1,13) (2,12) (3,22) (4,21) (5,20) (6,19) (7,18) (8,17) (9,16) (10,15) (11,14)

12.22-1.0.2-2-2-2-2-2.1.14
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,17) (2,16) (3,15) (4,14) (5,13) (6,12) (7,22) (8,21) (9,20) (10,19) (11,18)
  (1,15) (2,14) (3,13) (4,12) (5,22) (6,21) (7,20) (8,19) (9,18) (10,17) (11,16)

12.22-1.0.2-2-2-2-2-2.1.15
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,19) (2,18) (3,17) (4,16) (5,15) (6,14) (7,13) (8,12) (9,22) (10,21) (11,20)
  (1,17) (2,16) (3,15) (4,14) (5,13) (6,12) (7,22) (8,21) (9,20) (10,19) (11,18)

12.22-1.0.2-2-2-2-2-2.1.16
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,21) (2,20) (3,19) (4,18) (5,17) (6,16) (7,15) (8,14) (9,13) (10,12) (11,22)
  (1,19) (2,18) (3,17) (4,16) (5,15) (6,14) (7,13) (8,12) (9,22) (10,21) (11,20)

12.22-1.0.2-2-2-2-2-2.1.17
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,16) (2,15) (3,14) (4,13) (5,12) (6,22) (7,21) (8,20) (9,19) (10,18) (11,17)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,19) (2,18) (3,17) (4,16) (5,15) (6,14) (7,13) (8,12) (9,22) (10,21) (11,20)

12.22-1.0.2-2-2-2-2-2.1.18
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,16) (2,15) (3,14) (4,13) (5,12) (6,22) (7,21) (8,20) (9,19) (10,18) (11,17)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)
  (1,21) (2,20) (3,19) (4,18) (5,17) (6,16) (7,15) (8,14) (9,13) (10,12) (11,22)

12.22-1.0.2-2-2-2-2-2.1.19
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,16) (2,15) (3,14) (4,13) (5,12) (6,22) (7,21) (8,20) (9,19) (10,18) (11,17)
  (1,16) (2,15) (3,14) (4,13) (5,12) (6,22) (7,21) (8,20) (9,19) (10,18) (11,17)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)

12.22-1.0.2-2-2-2-2-2.1.20
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,12) (2,22) (3,21) (4,20) (5,19) (6,18) (7,17) (8,16) (9,15) (10,14) (11,13)
  (1,16) (2,15) (3,14) (4,13) (5,12) (6,22) (7,21) (8,20) (9,19) (10,18) (11,17)
  (1,18) (2,17) (3,16) (4,15) (5,14) (6,13) (7,12) (8,22) (9,21) (10,20) (11,19)
  (1,14) (2,13) (3,12) (4,22) (5,21) (6,20) (7,19) (8,18) (9,17) (10,16) (11,15)

Display number of generating vectors: