Properties

Label 10.8-3.0.2-2-2-2-2-2-2-4.5
Genus \(10\)
Quotient genus \(0\)
Group \(D_4\)
Signature \([ 0; 2, 2, 2, 2, 2, 2, 2, 4 ]\)
Generating Vectors \(16\)

Related objects

Downloads

Learn more

Family Information

Genus: $10$
Quotient genus: $0$
Group name: $D_4$
Group identifier: $[8,3]$
Signature: $[ 0; 2, 2, 2, 2, 2, 2, 2, 4 ]$
Conjugacy classes for this refined passport: $2, 3, 3, 3, 4, 4, 4, 5$

Jacobian variety group algebra decomposition:$E\times E\times A_{2}\times A_{3}^{2}$
Corresponding character(s): $2, 3, 4, 5$

Other Data

Hyperelliptic curve(s):no
Cyclic trigonal curve(s):no

Generating vector(s)

Displaying 16 of 16 generating vectors for this refined passport.

10.8-3.0.2-2-2-2-2-2-2-4.5.1

  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,8,2,7) (3,5,4,6)

10.8-3.0.2-2-2-2-2-2-2-4.5.2
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,7,2,8) (3,6,4,5)

10.8-3.0.2-2-2-2-2-2-2-4.5.3
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,7,2,8) (3,6,4,5)

10.8-3.0.2-2-2-2-2-2-2-4.5.4
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)
  (1,8,2,7) (3,5,4,6)

10.8-3.0.2-2-2-2-2-2-2-4.5.5
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,7,2,8) (3,6,4,5)

10.8-3.0.2-2-2-2-2-2-2-4.5.6
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,8,2,7) (3,5,4,6)

10.8-3.0.2-2-2-2-2-2-2-4.5.7
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,8,2,7) (3,5,4,6)

10.8-3.0.2-2-2-2-2-2-2-4.5.8
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)
  (1,7,2,8) (3,6,4,5)

10.8-3.0.2-2-2-2-2-2-2-4.5.9
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,7,2,8) (3,6,4,5)

10.8-3.0.2-2-2-2-2-2-2-4.5.10
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,8,2,7) (3,5,4,6)

10.8-3.0.2-2-2-2-2-2-2-4.5.11
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,8,2,7) (3,5,4,6)

10.8-3.0.2-2-2-2-2-2-2-4.5.12
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,3) (2,4) (5,7) (6,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)
  (1,7,2,8) (3,6,4,5)

10.8-3.0.2-2-2-2-2-2-2-4.5.13
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,8,2,7) (3,5,4,6)

10.8-3.0.2-2-2-2-2-2-2-4.5.14
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,7,2,8) (3,6,4,5)

10.8-3.0.2-2-2-2-2-2-2-4.5.15
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,5) (2,6) (3,8) (4,7)
  (1,7,2,8) (3,6,4,5)

10.8-3.0.2-2-2-2-2-2-2-4.5.16
  (1,2) (3,4) (5,6) (7,8)
  (1,3) (2,4) (5,7) (6,8)
  (1,4) (2,3) (5,8) (6,7)
  (1,4) (2,3) (5,8) (6,7)
  (1,5) (2,6) (3,8) (4,7)
  (1,6) (2,5) (3,7) (4,8)
  (1,6) (2,5) (3,7) (4,8)
  (1,8,2,7) (3,5,4,6)

Display number of generating vectors: