Properties

Label 10.12-4.0.2-2-2-2-2-2-2.4
Genus \(10\)
Quotient genus \(0\)
Group \(D_6\)
Signature \([ 0; 2, 2, 2, 2, 2, 2, 2 ]\)
Generating Vectors \(40\)

Related objects

Downloads

Learn more

Family Information

Genus: $10$
Quotient genus: $0$
Group name: $D_6$
Group identifier: $[12,4]$
Signature: $[ 0; 2, 2, 2, 2, 2, 2, 2 ]$
Conjugacy classes for this refined passport: $2, 3, 3, 3, 4, 4, 4$

Jacobian variety group algebra decomposition:$A_{2}\times E\times E\times E^{2}\times A_{2}^{2}$
Corresponding character(s): $2, 3, 4, 5, 6$

Other Data

Hyperelliptic curve(s):no
Cyclic trigonal curve(s):no

Generating vector(s)

Displaying 20 of 40 generating vectors for this refined passport.

10.12-4.0.2-2-2-2-2-2-2.4.1

  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)

10.12-4.0.2-2-2-2-2-2-2.4.2
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)

10.12-4.0.2-2-2-2-2-2-2.4.3
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)

10.12-4.0.2-2-2-2-2-2-2.4.4
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)

10.12-4.0.2-2-2-2-2-2-2.4.5
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)

10.12-4.0.2-2-2-2-2-2-2.4.6
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)

10.12-4.0.2-2-2-2-2-2-2.4.7
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)

10.12-4.0.2-2-2-2-2-2-2.4.8
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)

10.12-4.0.2-2-2-2-2-2-2.4.9
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)

10.12-4.0.2-2-2-2-2-2-2.4.10
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)

10.12-4.0.2-2-2-2-2-2-2.4.11
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)

10.12-4.0.2-2-2-2-2-2-2.4.12
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)

10.12-4.0.2-2-2-2-2-2-2.4.13
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)

10.12-4.0.2-2-2-2-2-2-2.4.14
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)

10.12-4.0.2-2-2-2-2-2-2.4.15
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)

10.12-4.0.2-2-2-2-2-2-2.4.16
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)

10.12-4.0.2-2-2-2-2-2-2.4.17
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)

10.12-4.0.2-2-2-2-2-2-2.4.18
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)

10.12-4.0.2-2-2-2-2-2-2.4.19
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,12) (2,11) (3,10) (4,9) (5,8) (6,7)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)

10.12-4.0.2-2-2-2-2-2-2.4.20
  (1,4) (2,5) (3,6) (7,10) (8,11) (9,12)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,9) (2,8) (3,7) (4,12) (5,11) (6,10)
  (1,7) (2,9) (3,8) (4,10) (5,12) (6,11)
  (1,11) (2,10) (3,12) (4,8) (5,7) (6,9)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)
  (1,10) (2,12) (3,11) (4,7) (5,9) (6,8)

Display number of generating vectors: