Family Information
Genus: | $10$ |
Quotient genus: | $0$ |
Group name: | $A_4$ |
Group identifier: | $[12,3]$ |
Signature: | $[ 0; 2, 2, 2, 3, 3, 3 ]$ |
Conjugacy classes for this refined passport: | $2, 2, 2, 3, 3, 3$ |
Jacobian variety group algebra decomposition: | $E\times A_{3}^{3}$ |
Corresponding character(s): | $2, 4$ |
Other Data
Hyperelliptic curve(s): | no |
Cyclic trigonal curve(s): | no |
Generating vector(s)
Displaying 20 of 36 generating vectors for this refined passport.
10.12-3.0.2-2-2-3-3-3.1.1
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,6,11) (2,7,9) (3,5,10) (4,8,12) |
10.12-3.0.2-2-2-3-3-3.1.2
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,7,12) (2,6,10) (3,8,9) (4,5,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) |
10.12-3.0.2-2-2-3-3-3.1.3
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,8,10) (2,5,12) (3,7,11) (4,6,9) | |
(1,8,10) (2,5,12) (3,7,11) (4,6,9) |
10.12-3.0.2-2-2-3-3-3.1.4
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,6,11) (2,7,9) (3,5,10) (4,8,12) | |
(1,7,12) (2,6,10) (3,8,9) (4,5,11) |
10.12-3.0.2-2-2-3-3-3.1.5
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,8,10) (2,5,12) (3,7,11) (4,6,9) |
10.12-3.0.2-2-2-3-3-3.1.6
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,7,12) (2,6,10) (3,8,9) (4,5,11) | |
(1,7,12) (2,6,10) (3,8,9) (4,5,11) |
10.12-3.0.2-2-2-3-3-3.1.7
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,8,10) (2,5,12) (3,7,11) (4,6,9) | |
(1,6,11) (2,7,9) (3,5,10) (4,8,12) |
10.12-3.0.2-2-2-3-3-3.1.8
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,6,11) (2,7,9) (3,5,10) (4,8,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) |
10.12-3.0.2-2-2-3-3-3.1.9
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,3) (2,4) (5,7) (6,8) (9,11) (10,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,7,12) (2,6,10) (3,8,9) (4,5,11) |
10.12-3.0.2-2-2-3-3-3.1.10
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,3) (2,4) (5,7) (6,8) (9,11) (10,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,7,12) (2,6,10) (3,8,9) (4,5,11) | |
(1,8,10) (2,5,12) (3,7,11) (4,6,9) |
10.12-3.0.2-2-2-3-3-3.1.11
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,3) (2,4) (5,7) (6,8) (9,11) (10,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,8,10) (2,5,12) (3,7,11) (4,6,9) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) |
10.12-3.0.2-2-2-3-3-3.1.12
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,3) (2,4) (5,7) (6,8) (9,11) (10,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,6,11) (2,7,9) (3,5,10) (4,8,12) | |
(1,6,11) (2,7,9) (3,5,10) (4,8,12) |
10.12-3.0.2-2-2-3-3-3.1.13
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,8,10) (2,5,12) (3,7,11) (4,6,9) |
10.12-3.0.2-2-2-3-3-3.1.14
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,7,12) (2,6,10) (3,8,9) (4,5,11) | |
(1,7,12) (2,6,10) (3,8,9) (4,5,11) |
10.12-3.0.2-2-2-3-3-3.1.15
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,8,10) (2,5,12) (3,7,11) (4,6,9) | |
(1,6,11) (2,7,9) (3,5,10) (4,8,12) |
10.12-3.0.2-2-2-3-3-3.1.16
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,6,11) (2,7,9) (3,5,10) (4,8,12) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) |
10.12-3.0.2-2-2-3-3-3.1.17
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,6,11) (2,7,9) (3,5,10) (4,8,12) |
10.12-3.0.2-2-2-3-3-3.1.18
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,7,12) (2,6,10) (3,8,9) (4,5,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) |
10.12-3.0.2-2-2-3-3-3.1.19
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,8,10) (2,5,12) (3,7,11) (4,6,9) | |
(1,8,10) (2,5,12) (3,7,11) (4,6,9) |
10.12-3.0.2-2-2-3-3-3.1.20
(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,4) (2,3) (5,8) (6,7) (9,12) (10,11) | |
(1,5,9) (2,8,11) (3,6,12) (4,7,10) | |
(1,6,11) (2,7,9) (3,5,10) (4,8,12) | |
(1,7,12) (2,6,10) (3,8,9) (4,5,11) |