Learn more

Currently the database contains all groups $G$ acting as automorphisms of curves $X/\C$ of genus 2 to 15 such that $X/G$ has genus 0, as well as genus 2 through 4 with quotient genus greater than 0. There are $31{,}789$ distinct refined passports in the database. The number of distinct generating vectors is $335{,}012$. Here are some further statistics.

Browse

By genus: 2  3  4  5  6  7  8  9  10  11  12  13  14  15 
By group: $C_2$  $C_3$  $C_4$  $C_2^2$  $C_5$  $S_3$  $C_6$  $C_7$  $C_8$  $C_2\times C_4$  $D_4$  $Q_8$  $C_2^3$  $C_9$  $C_3^2$  $D_5$  $C_{10}$  $C_{11}$  $C_3:C_4$  $C_{12}$  $A_4$  $D_6$  $C_2\times C_6$  $\cdots$
Hyperelliptic curves by genus: 2  3  4  5  6  7  8  9  10  11  12  13  14  15 
Cyclic trigonal curves by genus: 3  4  5  6  7  8  9  10  12  13  14 
Some interesting families or a random refined passport

Search

Find

Label
e.g. 2.12-4.0.2-2-2-3 or 3.168-42.0.2-3-7.2