Properties

Label 960.10124.40.j1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:C_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $acd^{5}, d^{30}, c^{2}d^{30}, d^{40}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $S_3\times D_4\times C_{20}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times \GL(3,2)$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_4\times \GL(3,2)$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^7.C_2^5)$
$\operatorname{Aut}(H)$ $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(512\)\(\medspace = 2^{9} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_4\times C_{20}$
Normalizer:$S_3\times D_4\times C_{20}$
Minimal over-subgroups:$C_6:C_{20}$$C_6.D_4$$C_4\times D_6$$D_6:C_4$$C_{12}:C_4$$C_{12}:C_4$
Maximal under-subgroups:$C_2\times C_6$$C_3:C_4$$C_2\times C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$8$
Projective image$C_{15}:C_2^4$