Properties

Label 960.10067.8.q1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times D_6$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 12 & 33 \\ 1 & 32 \end{array}\right), \left(\begin{array}{rr} 43 & 0 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 21 & 22 \\ 22 & 21 \end{array}\right), \left(\begin{array}{rr} 25 & 4 \\ 16 & 29 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^2:D_{12}\times C_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^5.C_2^4)$
$\operatorname{Aut}(H)$ $C_4\times S_3\times S_4$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_4^2:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_{60}:C_2^3$
Normal closure:$C_{15}:C_2^4$
Core:$C_2\times C_{30}$
Minimal over-subgroups:$C_{15}:C_2^4$$C_{10}\times D_{12}$
Maximal under-subgroups:$C_2\times C_{30}$$S_3\times C_{10}$$S_3\times C_{10}$$C_2^2\times C_{10}$$C_2\times D_6$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$S_3\times D_4$