Subgroup ($H$) information
| Description: | $C_2^2\times C_{30}$ |
| Order: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rr}
21 & 22 \\
22 & 21
\end{array}\right), \left(\begin{array}{rr}
43 & 22 \\
22 & 43
\end{array}\right), \left(\begin{array}{rr}
25 & 4 \\
16 & 29
\end{array}\right), \left(\begin{array}{rr}
1 & 22 \\
22 & 1
\end{array}\right), \left(\begin{array}{rr}
25 & 0 \\
0 & 25
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
| Description: | $C_2^2:D_{12}\times C_{10}$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^3$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:(C_2^6.C_2^5.C_2^4)$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_4\times \GL(3,2)$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-8$ |
| Projective image | $C_2\times D_6$ |