Properties

Label 960.10067.4.i1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times D_{12}$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 23 & 36 \\ 22 & 21 \end{array}\right), \left(\begin{array}{rr} 25 & 4 \\ 16 & 29 \end{array}\right), \left(\begin{array}{rr} 14 & 27 \\ 9 & 8 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 1 & 22 \\ 22 & 1 \end{array}\right), \left(\begin{array}{rr} 43 & 22 \\ 22 & 43 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^2:D_{12}\times C_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^5.C_2^4)$
$\operatorname{Aut}(H)$ $(D_6\times C_4^2):D_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}:C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_2^2:D_{12}\times C_{10}$
Complements:$C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_{60}:C_2^3$$C_5\times C_2^2:D_{12}$
Maximal under-subgroups:$C_{10}\times D_6$$C_{10}\times D_6$$C_2\times C_{60}$$C_5\times D_{12}$$D_4\times C_{10}$$C_2\times D_{12}$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$2$
Projective image$C_2^2\times D_6$