Properties

Label 960.10067.30.f1
Order $ 2^{5} $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\wr C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 43 & 30 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 21 & 0 \\ 22 & 21 \end{array}\right), \left(\begin{array}{rr} 8 & 17 \\ 35 & 14 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^2:D_{12}\times C_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^5.C_2^4)$
$\operatorname{Aut}(H)$ $C_2\wr S_3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$C_2^3\wr C_2$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_2^5:C_{10}$
Normal closure:$C_2^2:D_{12}$
Core:$C_2^2:C_4$
Minimal over-subgroups:$C_2^4:C_{10}$$C_2^2:D_{12}$$C_2^3:D_4$
Maximal under-subgroups:$C_2^2:C_4$$C_2^4$$C_2\times D_4$$C_2\times D_4$$C_2^2:C_4$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$-1$
Projective image$C_{15}:C_2^4$