Properties

Label 960.10067.10.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times D_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 43 & 30 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 25 & 4 \\ 16 & 29 \end{array}\right), \left(\begin{array}{rr} 43 & 22 \\ 22 & 43 \end{array}\right), \left(\begin{array}{rr} 1 & 22 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 21 & 22 \\ 22 & 21 \end{array}\right), \left(\begin{array}{rr} 1 & 22 \\ 22 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_2^2:D_{12}\times C_{10}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^5.C_2^4)$
$\operatorname{Aut}(H)$ $C_2^4.A_8\times S_3$, of order \(1935360\)\(\medspace = 2^{11} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^5.(D_4\times D_6)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3\times C_{10}$
Normalizer:$C_2^2:D_{12}\times C_{10}$
Complements:$C_{10}$
Minimal over-subgroups:$C_{15}:C_2^5$$C_2^3:D_{12}$
Maximal under-subgroups:$C_2^3\times C_6$$C_2^2\times D_6$$C_2^2\times D_6$$C_2^2\times D_6$$C_2^2\times D_6$$C_2^5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{10}\times D_6$