Properties

Label 960.10064.10.f1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6.D_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 21 & 11 \\ 0 & 21 \end{array}\right), \left(\begin{array}{rr} 25 & 4 \\ 16 & 29 \end{array}\right), \left(\begin{array}{rr} 23 & 22 \\ 0 & 23 \end{array}\right), \left(\begin{array}{rr} 21 & 30 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 23 & 22 \\ 22 & 23 \end{array}\right), \left(\begin{array}{rr} 1 & 22 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $S_3\times C_2^3:C_{20}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^7.C_2^4.C_2^4)$
$\operatorname{Aut}(H)$ $C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$S_3\times C_2^3:C_{20}$
Complements:$C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$
Minimal over-subgroups:$C_2^2:C_{20}\times S_3$$C_2^4.D_6$
Maximal under-subgroups:$C_2^2\times D_6$$C_2^2:C_{12}$$C_6.D_4$$C_4\times D_6$$D_6:C_4$$C_2^3:C_4$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$1$
Projective image$C_{15}:C_2^4$