Subgroup ($H$) information
| Description: | $C_6$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Index: | \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$c^{2}d^{30}, d^{40}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_2\times C_{20}\times D_{12}$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_{10}.C_2^4$ |
| Order: | \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Automorphism Group: | $C_2\wr D_6.C_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
| Outer Automorphisms: | $C_4\times D_4\times S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:(C_2^9.C_2^6)$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\card{W}$ | \(2\) |
Related subgroups
| Centralizer: | $C_2\times C_4\times C_{60}$ | ||||
| Normalizer: | $C_2\times C_{20}\times D_{12}$ | ||||
| Minimal over-subgroups: | $C_{30}$ | $C_2\times C_6$ | $C_2\times C_6$ | $D_6$ | $C_{12}$ |
| Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |