Subgroup ($H$) information
| Description: | $C_2\times C_4$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$ac^{2}d^{5}, b^{5}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_4^2:S_3\times C_{10}$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:(C_2^5.C_2^5.C_2^5)$ |
| $\operatorname{Aut}(H)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\operatorname{res}(S)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(512\)\(\medspace = 2^{9} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $24$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | $0$ |
| Projective image | $D_{12}:C_{10}$ |