Properties

Label 93312.n.1152.A
Order $ 3^{4} $
Index $ 2^{7} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(3\)
Generators: $\langle(2,6,7), (4,11,5), (3,9,12)(4,11,5), (1,8,10)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^2:S_3\wr D_4$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_{12}^2:D_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_3:(C_2^4.C_2^5.C_2^2)$
Outer Automorphisms: $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7:D_4$, of order \(248832\)\(\medspace = 2^{10} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_2.\PSL(4,3).C_2$
$W$$C_2\wr D_4$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_3^6$
Normalizer:$C_3^2:S_3\wr D_4$
Complements:$C_{12}^2:D_4$
Minimal over-subgroups:$C_3^5$$C_3^5$$C_3^3:S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^2:S_3\wr D_4$