Properties

Label 9216.u.6.b1
Order $ 2^{9} \cdot 3 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6:S_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(9,12)(10,11)(13,16)(14,15), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2^6:(S_3\times S_4)$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6:(S_3\times S_4)$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^6.S_4^2$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
$W$$C_2^6:S_3^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^6:(S_3\times S_4)$
Complements:$S_3$ $S_3$ $S_3$ $S_3$
Minimal over-subgroups:$C_2^6:(C_3\times S_4)$$C_2^6:(C_2\times S_4)$
Maximal under-subgroups:$C_2^6:A_4$$C_2^6:D_4$$C_2^4:S_4$$C_2^4:S_4$$C_2^2\wr S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$3$
Projective image$C_2^6:(S_3\times S_4)$