Properties

Label 9216.mt.384.B
Order $ 2^{3} \cdot 3 $
Index $ 2^{7} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,3)(2,4)(5,6)(7,8), (9,11,10), (12,13)(14,15)(16,17)(18,19), (10,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $S_3\times C_2^6:S_4$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^4:S_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^6:(S_3\times \GL(3,2))$, of order \(64512\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^4.S_3^3$
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{W}$\(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^6:S_4$
Normalizer:$S_3\times C_2^6:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed