Properties

Label 86400.u.60.a1
Order $ 2^{5} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4\times A_5$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(4,5)(11,12)(13,14), (2,5)(3,4), (2,4)(3,5), (2,5,4), (1,11,13)(3,5,4), (4,5)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a direct factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $S_4\times A_5^2$
Order: \(86400\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $A_5$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $0$

The quotient is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times S_5\wr C_2$, of order \(691200\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_4\times S_5$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$W$$S_4\times A_5$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$A_5$
Normalizer:$S_4\times A_5^2$
Complements:$A_5$ $A_5$
Minimal over-subgroups:$C_5\times S_4\times A_5$$S_4\times \GL(2,4)$$C_2\times S_4\times A_5$
Maximal under-subgroups:$A_4\times A_5$$D_4\times A_5$$S_3\times A_5$$A_4\times S_4$$D_5\times S_4$$S_3\times S_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-60$
Projective image$S_4\times A_5^2$