Subgroup ($H$) information
| Description: | $C_2\times C_4$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$a, b^{3}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $(C_3\times C_{12}).S_4$ |
| Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.Q_8.C_2^2.D_6^2$ |
| $\operatorname{Aut}(H)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $54$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $54$ |
| Projective image | $C_3^2:S_4$ |