Properties

Label 840.55.420.a1.a1
Order $ 2 $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(2\)
Generators: $b^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{105}:Q_8$
Order: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{15}:D_{14}$
Order: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Automorphism Group: $C_4\times S_3\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Outer Automorphisms: $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4\times S_3\times F_7$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{105}:Q_8$
Normalizer:$C_{105}:Q_8$
Minimal over-subgroups:$C_{14}$$C_{10}$$C_6$$C_4$$C_4$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-42$
Projective image$C_{15}:D_{14}$