Properties

Label 81920.eez.1280.A
Order $ 2^{6} $
Index $ 2^{8} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Exponent: \(2\)
Generators: $\langle(33,34)(35,36)(37,38)(39,40), (17,18)(19,20)(21,22)(23,24)(25,26)(27,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^5.C_2^8:C_{10}$
Order: \(81920\)\(\medspace = 2^{14} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^8:C_5$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $\AGammaL(2,16)$, of order \(62668800\)\(\medspace = 2^{14} \cdot 3^{2} \cdot 5^{2} \cdot 17 \)
Outer Automorphisms: $C_3.\SL(2,16).C_4$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:S_4$, of order \(10485760\)\(\medspace = 2^{21} \cdot 5 \)
$\operatorname{Aut}(H)$ $\GL(6,2)$, of order \(20158709760\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \)
$\card{W}$\(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_2^6.C_2^4$
Normalizer:$C_2^5.C_2^8:C_{10}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed