Properties

Label 81920.eez.10.O
Order $ 2^{13} $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(8192\)\(\medspace = 2^{13} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: not computed
Generators: $\langle(1,4)(2,3)(5,7)(6,8)(9,12,10,11)(13,15,14,16)(17,18)(21,22)(29,30)(31,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: not computed
Derived length: not computed

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^5.C_2^8:C_{10}$
Order: \(81920\)\(\medspace = 2^{14} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:S_4$, of order \(10485760\)\(\medspace = 2^{21} \cdot 5 \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^6.C_2^6.C_2^2$
Normal closure:$C_2^6.C_2^6.C_2^2$
Core:$C_2^6.C_2^4$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed