Properties

Label 800.941.32.a1
Order $ 5^{2} $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2$
Order: \(25\)\(\medspace = 5^{2} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(5\)
Generators: $b^{4}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $5$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}^2:Q_8$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2:Q_8$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
Outer Automorphisms: $C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.C_2^4.S_5$
$\operatorname{Aut}(H)$ $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}^2:Q_8$
Normalizer:$C_{10}^2:Q_8$
Minimal over-subgroups:$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$$C_5\times C_{10}$
Maximal under-subgroups:$C_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^2:Q_8$