Properties

Label 800.181.10.c1
Order $ 2^{4} \cdot 5 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, c, d^{50}, b, d^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2^4:C_{50}$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:C_3.(C_{20}\times D_4)$
$\operatorname{Aut}(H)$ $C_4\times A_8$, of order \(80640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times \GL(2,\mathbb{Z}/4)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3\times C_{50}$
Normalizer:$C_2^4:C_{50}$
Minimal over-subgroups:$C_2^3\times C_{50}$$C_2^4:C_{10}$
Maximal under-subgroups:$C_2^2\times C_{10}$$C_2^2\times C_{10}$$C_2^4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_2^2\times C_{10}$