Properties

Label 78732.lp.972.E
Order $ 3^{4} $
Index $ 2^{2} \cdot 3^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times C_9$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $d^{7}f^{5}, e^{3}f^{6}, f^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^5.C_3\wr C_2^2$
Order: \(78732\)\(\medspace = 2^{2} \cdot 3^{9} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $(C_3\times C_9):S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $S_3\times C_3^3:\GL(2,3)$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Outer Automorphisms: $C_3\times S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{6176}.C_{32}$, of order \(2125764\)\(\medspace = 2^{2} \cdot 3^{12} \)
$\operatorname{Aut}(H)$ $C_6.C_3^4:\GL(2,3)$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\card{W}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_9^3$
Normalizer:$C_3^5.C_3\wr C_2^2$
Minimal over-subgroups:$C_3^3\times C_9$$C_3.C_9^2$
Maximal under-subgroups:$C_3^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed