Properties

Label 77760.bo.4860.i1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3^{5} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(4860\)\(\medspace = 2^{2} \cdot 3^{5} \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,6)(2,5)(3,4)(7,9)(10,11)(13,15), (7,11)(8,12)(9,10)(13,15), (2,3,5,4)(7,11)(8,12)(9,10)(13,15), (2,5)(3,4)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^2:D_6\times S_6$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3\wr C_2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$D_4\times C_2^3$
Normal closure:$C_3^2:D_6\times S_6$
Core:$C_1$
Minimal over-subgroups:$C_4\times D_6$$C_4\times D_6$$C_4\times D_6$$C_2^2\times D_4$$C_2^3\times C_4$
Maximal under-subgroups:$C_2^3$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$2430$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^2:D_6\times S_6$