Properties

Label 7776.dy.54.bs1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:C_2^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}, b^{6}, c^{2}e^{4}, d, e^{3}, c^{3}de^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^3.S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_6^2:(D_4\times \GL(2,3))$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_6\times (C_2\times C_6):S_3^2$
Normal closure:$C_6^2:D_{18}$
Core:$C_2^2\times C_6$
Minimal over-subgroups:$C_6^3:C_2$$C_6^3:C_2$$C_6^3:C_2$$D_6^2:C_2$
Maximal under-subgroups:$C_6:D_6$$C_6.D_6$$C_2\times C_6^2$$C_6^2:C_2$$C_6^2:C_2$$C_6:D_4$$C_6:D_4$$C_6:D_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^3.(C_6\times S_4)$