Properties

Label 7680.fs.8.T
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:A_4\times F_5$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(10,12)(11,13)(14,16)(15,17), (10,11)(12,13)(14,15)(16,17), (1,5,2,3,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\wr S_3\times F_5$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.\OD_{16}$, of order \(92160\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $F_5\times C_2^4:C_3.S_5$
$W$$C_2^2:A_4\times F_5$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\wr C_3\times F_5$
Normal closure:$C_2^3:A_4\times F_5$
Core:$D_5\times C_2^2:A_4$
Minimal over-subgroups:$C_2^3:A_4\times F_5$$C_2^3:A_4\times F_5$
Maximal under-subgroups:$D_5\times C_2^2:A_4$$C_2^4\times F_5$$A_4\times F_5$$A_4\times F_5$$C_2^4:C_{12}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\wr S_3\times F_5$