Properties

Label 7680.fs.768.A
Order $ 2 \cdot 5 $
Index $ 2^{8} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,5,2,3,4), (6,7)(8,9)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_2\wr S_3\times F_5$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^6.D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $A_4^2.C_2^3.C_2^4$
Outer Automorphisms: $C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.\OD_{16}$, of order \(92160\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_5\times C_2^4:C_3.D_4$
Normalizer:$C_2\wr S_3\times F_5$
Minimal over-subgroups:$C_2\times C_{10}$$D_{10}$$D_{10}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^3:S_4\times F_5$