Properties

Label 7680.fs.6.N
Order $ 2^{8} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:C_4\times F_5$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(2,3)(4,5)(6,8,7,9)(10,14)(11,16)(12,15)(13,17), (10,12)(11,13)(14,16)(15,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2\wr S_3\times F_5$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.\OD_{16}$, of order \(92160\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^{10}.A_4.C_2^3\times F_5$
$W$$C_2^4\times F_5$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_5:(C_2^7.C_2^2)$
Normal closure:$C_2^4.(C_6\times F_5).C_2$
Core:$F_5\times C_2^5$
Minimal over-subgroups:$C_2^4.(C_6\times F_5).C_2$$C_5:(C_2^7.C_2^2)$
Maximal under-subgroups:$F_5\times C_2^5$$C_2\times D_{10}:C_4^2$$C_2\times D_{10}:C_4^2$$(C_2^3\times F_5):C_4$$(C_2^3\times F_5):C_4$$C_2^5.D_{10}$$C_2^5:F_5$$C_2^4:C_4^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^3:S_4\times F_5$