Properties

Label 7680.fs.48.F
Order $ 2^{5} \cdot 5 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times F_5$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(1,5,2,3,4), (2,3)(4,5)(6,8)(7,9)(10,14)(11,16)(12,15)(13,17), (2,5,3,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2\wr S_3\times F_5$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.\OD_{16}$, of order \(92160\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$W$$C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$D_{10}.C_2^5$
Normal closure:$C_2\wr S_3\times F_5$
Core:$C_2\times F_5$
Minimal over-subgroups:$D_{10}.C_2^4$$D_{10}.C_2^4$
Maximal under-subgroups:$C_4\times D_4$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_2^3:S_4\times F_5$