Properties

Label 7680.fs.240.I
Order $ 2^{5} $
Index $ 2^{4} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(2,3)(4,5)(6,8)(7,9)(10,14)(11,16)(12,15)(13,17), (2,5,3,4)(10,11)(12,13)(14,16)(15,17), (6,7)(8,9), (2,3)(4,5), (8,9)(10,11)(12,13)(14,16)(15,17)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\wr S_3\times F_5$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.\OD_{16}$, of order \(92160\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure:$C_2\wr S_3\times F_5$
Core:$C_2$
Minimal over-subgroups:$D_4\times F_5$

Other information

Number of subgroups in this autjugacy class$180$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_2^3:S_4\times F_5$