Properties

Label 7680.fs.16.B
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5\times C_2^2:A_4$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(10,12)(11,13)(14,16)(15,17), (10,11)(12,13)(14,15)(16,17), (1,5,2,3,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\wr S_3\times F_5$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.\OD_{16}$, of order \(92160\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $F_5\times C_2^4:C_3.S_5$
$W$$F_5\times C_2^2:S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\wr S_3\times F_5$
Minimal over-subgroups:$C_2^2:A_4\times D_{10}$$C_2^2:A_4\times F_5$$C_2^2:A_4\times D_{10}$$D_5\times C_2^2:S_4$$C_2^2:A_4\times F_5$$(C_2\times D_{10}).S_4$
Maximal under-subgroups:$C_2^4:C_{15}$$C_2^3\times D_{10}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\wr S_3\times F_5$