Properties

Label 768.85027.16.co1
Order $ 2^{4} \cdot 3 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_6$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,4)(3,8), (1,3)(2,5)(4,8)(6,7), (10,12), (2,5)(6,7)(9,11)(10,12)(14,15), (13,14,15)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $(D_6\times C_2^4):C_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^7.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $S_3\times C_2^3:\GL(3,2)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\card{W}$\(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$D_6\times C_2^4$
Normal closure:$D_6\times C_2^4$
Core:$C_3$
Minimal over-subgroups:$C_2^3\times D_6$$C_2^3\times D_6$
Maximal under-subgroups:$C_2^2\times C_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2^4$

Other information

Number of subgroups in this autjugacy class$128$
Number of conjugacy classes in this autjugacy class$32$
Möbius function$0$
Projective image not computed