Properties

Label 768.364865.3.a1
Order $ 2^{8} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:D_4^2$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(3\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 11 & 5 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 31 & 9 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 53 & 42 \\ 36 & 17 \end{array}\right), \left(\begin{array}{rr} 41 & 0 \\ 30 & 11 \end{array}\right), \left(\begin{array}{rr} 7 & 30 \\ 24 & 43 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $D_6:D_4^2$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(786432\)\(\medspace = 2^{18} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^{12}.(C_2^2\times S_4)$, of order \(393216\)\(\medspace = 2^{17} \cdot 3 \)
$\card{W}$\(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2:D_4^2$
Normal closure:$D_6:D_4^2$
Core:$C_2.D_4^2$
Minimal over-subgroups:$D_6:D_4^2$
Maximal under-subgroups:$C_2.D_4^2$$C_2^4:D_4$$C_2^3\wr C_2$$C_2^4:D_4$$C_2^4:D_4$$D_4\times C_2^4$$C_2\times D_4^2$$C_2^3.C_2^4$$C_2^4:D_4$$C_2.D_4^2$$C_2.D_4^2$$C_2^4:D_4$$C_2^4:D_4$$C_2\times D_4^2$$C_2.D_4^2$$C_2.D_4^2$$C_2.D_4^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image not computed