Properties

Label 768.323569.6.a1
Order $ 2^{7} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4^2$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(4,7)(6,8), (1,3)(2,5)(4,7)(6,8)(12,13), (2,6)(5,8)(12,13), (1,3)(2,5)(6,8)(12,13), (1,3)(2,5)(4,7)(6,8), (2,5)(4,7), (1,4)(2,6)(3,7)(5,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $D_4^2:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_2^6.C_2^2\wr D_4$, of order \(131072\)\(\medspace = 2^{17} \)
$\card{W}$\(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$D_4^2:D_6$
Complements:$S_3$
Minimal over-subgroups:$C_6\times D_4^2$$D_4^2:C_2^2$
Maximal under-subgroups:$C_2^3:D_4$$C_4^2:C_2^2$$D_4^2$$C_2^3:D_4$$C_2^3:D_4$$C_4^2:C_2^2$$D_4\times C_2^3$$D_4^2$$D_4^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed