Properties

Label 768.323569.48.l1
Order $ 2^{4} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,3)(2,5)(4,7)(6,8), (1,2)(3,5)(4,6)(7,8)(10,11)(12,13), (1,3)(2,5)(4,7)(6,8)(12,13), (2,5)(6,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $D_4^2:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times D_4$
Normalizer:$D_4:C_2^3$
Normal closure:$D_{12}:C_2^3$
Core:$C_2^3$
Minimal over-subgroups:$C_6:D_4$$C_2^2\times D_4$$D_4:C_2^2$
Maximal under-subgroups:$C_2^3$$C_2^3$$C_2\times C_4$$D_4$$D_4$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed