Properties

Label 768.323569.32.u1
Order $ 2^{3} \cdot 3 $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,3)(2,5)(4,7)(6,8), (2,6,5,8)(4,7)(12,13), (9,10,11), (2,5)(6,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_4^2:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^3\times C_{12}$
Normalizer:$C_6\times D_4^2$
Normal closure:$C_2^2:C_{12}$
Core:$C_2\times C_6$
Minimal over-subgroups:$C_2^2:C_{12}$$C_2^2\times C_{12}$$C_6\times D_4$$C_6\times D_4$$C_6\times D_4$$C_2^2\times C_{12}$$C_2^2:C_{12}$$C_2^2:C_{12}$$C_2^2:C_{12}$$C_2^2:C_{12}$$C_4:C_{12}$
Maximal under-subgroups:$C_2\times C_6$$C_{12}$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed