Properties

Label 768.323569.32.bc1
Order $ 2^{3} \cdot 3 $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:C_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,4)(2,8)(3,7)(5,6), (1,3)(2,5)(4,7)(6,8), (9,10,11), (1,6,7,2)(3,8,4,5)(10,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_4^2:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^4:D_6$
Normal closure:$C_2^3.D_6$
Core:$C_6$
Minimal over-subgroups:$C_6.C_2^3$$C_6.D_4$$C_6.D_4$$C_6:D_4$$C_6.D_4$
Maximal under-subgroups:$C_2\times C_6$$C_3:C_4$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed