Properties

Label 768.323569.24.bf1
Order $ 2^{5} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(4,7)(6,8), (1,3)(2,5)(4,7)(6,8), (2,5)(4,7), (2,6)(5,8)(12,13), (1,7,3,4)(2,8)(5,6)(12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_4^2:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_6\times D_4^2$
Normal closure:$D_4^2$
Core:$C_2^2:C_4$
Minimal over-subgroups:$C_{12}:D_4$$D_4^2$$C_2^3:D_4$$D_4^2$
Maximal under-subgroups:$C_2^2:C_4$$C_2\times D_4$$C_2\times D_4$$C_2^2\times C_4$$C_2\times D_4$$C_2^2:C_4$$C_4:C_4$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image not computed