Properties

Label 768.323569.16.c1
Order $ 2^{4} \cdot 3 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_6$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,3)(2,5)(4,7)(6,8), (1,4)(2,6)(3,7)(5,8), (2,6)(5,8)(12,13), (9,10,11), (2,5)(6,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $D_4^2:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^6.C_2^6.C_2^2)$
$\operatorname{Aut}(H)$ $C_2\times A_8$, of order \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^4\times C_6$
Normalizer:$D_4^2:D_6$
Complements:$C_2\times D_4$
Minimal over-subgroups:$C_2^4\times C_6$$C_2^4:C_6$$C_2^4:C_6$$C_2^4:S_3$$C_{12}:C_2^3$
Maximal under-subgroups:$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed