Subgroup ($H$) information
| Description: | $C_2^3:C_{12}$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
7 & 0 \\
0 & 7
\end{array}\right), \left(\begin{array}{rr}
7 & 6 \\
0 & 7
\end{array}\right), \left(\begin{array}{rr}
1 & 6 \\
6 & 1
\end{array}\right), \left(\begin{array}{rr}
3 & 8 \\
4 & 3
\end{array}\right), \left(\begin{array}{rr}
10 & 3 \\
3 & 1
\end{array}\right), \left(\begin{array}{rr}
5 & 0 \\
0 & 5
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $D_4\times \GL(2,\mathbb{Z}/4)$ |
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2^3$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $A_4.C_2^6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\card{W}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |