Properties

Label 768.1088764.8.f1
Order $ 2^{5} \cdot 3 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:C_{12}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 7 & 6 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 1 & 6 \\ 6 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 8 \\ 4 & 3 \end{array}\right), \left(\begin{array}{rr} 10 & 3 \\ 3 & 1 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 0 & 5 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_4\times \GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$D_4\times \GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_2^4:C_{12}$$C_2^5:C_6$$C_2^5:C_6$$C_2^4.D_6$$C_2^3:D_{12}$$A_4:C_4^2$$C_2^3.D_{12}$
Maximal under-subgroups:$C_2^2\times A_4$$C_4\times A_4$$C_2^3\times C_4$$C_2\times C_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed